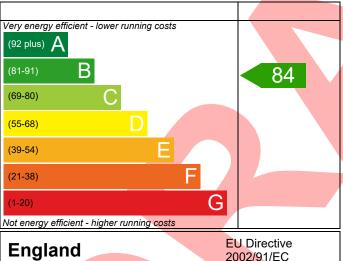
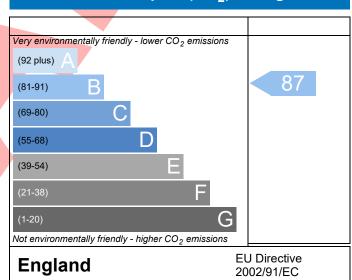
PREDICTED ENERGY ASSESSMENT


Plot 24, Land off Hawks Road, Dwelling type: House, Semi-Detached

Welton, Date of assessment: 19/07/2022 Lincoln, Produced by: Jake Eaton LN2 3BS Total floor area: 81.47 m²

This document is a Predicted Energy Assessment for properties marketed when they are incomplete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, this rating will be updated and an official Energy Performance Certificate will be created for the property. This will include more detailed information about the energy performance of the completed property.


The energy performance has been assessed using the Government approved SAP2012 methodology and is rated in terms of the energy use per square meter of floor area; the energy efficiency is based on fuel costs and the environmental impact is based on carbon dioxide (CO₂) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

Environmental Impact (CO₂) Rating

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO₂) emissions. The higher the rating the less impact it has on the environment.

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

BUILDING REGULATION COMPLIANCE Calculation Type: New Build (As Designed)

Assessment Reference	Property Reference LN2 3BS P	lot 24				Issued on Date	19/07/2022
Property	Assessment 001						
SAP Rating							
State	Property Plot 24, La	and off Hawks Ro	ad, Welton,	Lincoln, LN2 3BS			
Cotenissions (t/year) General Requirements Compliance Pass	SAP Rating		84 B	DER	17.48	TER	18.48
Assessor Details Mr. Jake Eaton, Jake Eaton, Tel: 01400283471, jake@aeratech.co.uk Assessor ID P711-0001 Client SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 - Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Mains gas Fuel factor 1.00 (mains gas) Target Carbon Dioxide Emission Rate (TER) 18.48 kgC0 ₂ /m² Dwelling Carbon Dioxide Emission Rate (DER) 17.48 kgC0 ₂ /m² 1b TFEE and DEE Target Fabric Energy Efficiency (TFEE) 52.67 kWh/m²/yr Dwelling Fabric Energy Efficiency (OFEE) 44.85 kWh/m²/yr Dwelling Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - 4 (max. 0.70) Pass Roof 0.11 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 1.40 (max. 0.35) Pass Characterial bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability at 50 pascals 7.00 (design value) m³/(h.m²) @ 50 Pa Pass Imitting System Efficiencies	Environmental		87 B	% DER <ter< td=""><td></td><td>5.42</td><td></td></ter<>		5.42	
Assessor Details Client SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 – Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Dwelling Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) Target Fabric Energy Efficiency (DFEE) Dwelling Fabric Standards 2 Fabric U-values Element External wall D.19 (max. 0.30) Pass Pass Poor Pass Poor Poor Pass Pass Pass Poor Pass Pass Pass Poor Pass Pass Pass Pass Pass Pass Pass Pas			1.26	DFEE	44.86	TFEE	52.67
SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 — Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) Target Fabric Standards 2 Fabric U-values Element External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass 2 Tarmal bridging Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.00 10.	General Requirements Complianc	e	Pass	% DFEE <tfee< td=""><td></td><td>14.83</td><td></td></tfee<>		14.83	
SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 - Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 17.48 18.48 17.48 18.40 17.48 18.60 17.48 18.60 18.48 19.00 (*5.4%) 19.00 (*5.4%) 10.00 (Assessor Details Mr. Jake Eato	n, Jake Eaton, Te	el: 014002834	171, jake@a <mark>erate</mark> d	ch.co.uk	Assessor ID	P711-0001
Triterion 1 - Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) Target Fabric En	Client						
Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Carbon Dioxide Emission Rate (DER) 17.48 1.00 (-5.4%) 1.0	SUMARY FOR INPUT DATA FOR Ne	w Build (As Des	igned)				
Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 17.48 -1.00 (-5.4%) 15.100 (-5.4%	Criterion 1 – Achieving the TER and	d TFEE rate					
Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 17.48 -1.00 (-5.4%) 17.48 kgCO ₂ /m² Pass -1.00 (-5.4%) kgCO ₂ /m² -1.0	1a TER and DER						
Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 17.48 kgCO2/m² Pass -1.00 (-5.4%) kgCO2/m² Pass -1.00 (-5.4%) kgCO2/m² 15 TFEE and DFEE Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) 44.86 kWh/m²/yr Pass Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Naximum 10.0 m²/(h.m²) @ 50 Pa Pass Pass Limiting System Efficiencies	Fuel for main heating	Mains gas					
Dwelling Carbon Dioxide Emission Rate (DER) 17.48 -1.00 (-5.4%) kgCO ₂ /m² bTFEE and DFEE Target Fabric Energy Efficiency (DFEE) Dwelling Fabric Energy Efficiency (DFEE) Limiting Fabric Standards 2 Fabric U-values Element External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 10	Fuel factor		1.00 (ma	ains gas)			
-1.00 (-5.4%) kgCO ₂ /m ² -1.00 (-5.4%) kWh/m ² /yr -1.00 (-5.4%) kWh/m ²	Target Carbon Dioxide Emission	18.48			kgCO ₂ /m ²		
1b TFEE and DFEE Target Fabric Energy Efficiency (DFEE) Dwelling Fabric Energy Efficiency (DFEE) 44.86 kWh/m²/yr Pass Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Roof 0.11 (max. 0.20) 1.40 (max. 3.30) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	Dwelling Carbon Dioxide Emission Rate (DER)		17.48			kgCO ₂ /m ²	Pass
Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) 44.86 kWh/m²/yr 7.8 (-14.8%) Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2 Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			-1.00 (-5	5.4%)		kgCO ₂ /m ²	
Dwelling Fabric Energy Efficiency (DFEE) 44.86 kWh/m²/yr Fass Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	1b TFEE and DFEE						
Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2 Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals 7.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	Target Fabric Energy Efficiency (TFEE)						
Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2 a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals 7.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	Dwelling Fabric Energy Efficienc	y (DFEE)					
Limiting Fabric Standards 2 Fabric U-values Highest Element Average Highest External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals 7.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass			-7.8 (-14	.8%)		kWh/m²/yr	Pass
Element Average Highest External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals 7.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies 10.0 m³/(h.m²) @ 50 Pa Pass		oility					
Element Average Highest External wall 0.19 (max. 0.30) 0.19 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass Za Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	-						
External wall O.19 (max. 0.30) O.19 (max. 0.70) Pass Party wall O.00 (max. 0.20) Floor O.14 (max. 0.25) O.14 (max. 0.70) Pass Roof O.11 (max. 0.20) O.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum	2 Fabric U-values						
Party wall Floor O.14 (max. 0.25) Roof O.11 (max. 0.20) Openings 1.40 (max. 2.00) Openings Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum O.00 (max. 0.20) O.14 (max. 0.70) O.12 (max. 0.35) Pass Pass Pass Pass T.40 (max. 3.30) Pass D.40 (max. 3.30) Pass D.40 (max. 3.30) Pass Pass Air permeability Air permeability at 50 pascals Maximum D.00 (design value) Maximum Maximum D.00 (max. 0.20) Pass Pass Pass Limiting System Efficiencies			_				
Floor 0.14 (max. 0.25) 0.14 (max. 0.70) Pass Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum Thermal bridging calculated from linear thermal transmittances for each junction 7.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies				0	.19 (max. 0.7	0)	
Roof 0.11 (max. 0.20) 0.12 (max. 0.35) Pass Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			• /			-1	
Openings 1.40 (max. 2.00) 1.40 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 1.40 (max. 3.30) Pass Pass Limiting System Efficiencies					, ,		_
Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 7.00 (design value) m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			•		, , ,		
Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 Thermal bridging calculated from linear thermal transmittances for each junction m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies		1.40 (Max. 2.00)	1	.40 (max. 3.3	0)	Pass
Air permeability Air permeability at 50 pascals Maximum 7.00 (design value) 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies		from linear the	mal transmit	tancos for each :	nction		
Air permeability at 50 pascals Maximum 7.00 (design value) 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies		nom mear ther	ınai transmit	tances for each Ju	HICUOH		
Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies		ls.	7.00./-1-	sign valua		m3//h m2\ @ F0 D	-
Limiting System Efficiencies							
			10.0			111 /(II.III ⁻) @ 50 Pi	a PdSS
		7					

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r19

BUILDING REGULATION COMPLIANCE Calculation Type: New Build (As Designed)

Main heating system	Boiler system with radiators or underfloor - Mains gas Data from database Vaillant ecoFIT sustain 835 VUW 356/6-3 (H-GB) Combi boiler Efficiency: 89.3% SEDBUK2009 Minimum: 88.0%	Pass
Secondary heating system	None	
5 Cylinder insulation		
Hot water storage	No cylinder	
<u>6 Controls</u>		
Space heating controls	Programmer, room thermostat and TRVs	Pass
Hot water controls	No cylinder	i
Boiler interlock	Yes	Pass
7 Low energy lights		
Percentage of fixed lights with low-energy fittings	100 %	
Minimum	75 %	Pass
8 Mechanical ventilation		
Not applicable		
Criterion 3 – Limiting the effects of heat gains in sur	mmer	
9 Summertime temperature		
Overheating risk (East Pennines)	Slight	Pass
Based on:		
Overshading	Average	
Windows facing North	4.54 m², No overhang	
Windows facing South	6.91 m², No overhang	
Windows facing West	1.45 m², No overhang	=
Air change rate	2.50 ach	_
Blinds/curtains	Light-coloured curtain or roller blind, closed 50% of daylight hours	
Criterion 4 – Building performance consistent with		
Party Walls		
Туре	U-value	
Filled Cavity with Edge Sealing	0.00 W/m²K	Pass
Air permeability and pressure testing		
3 Air permeability		
Air permeability at 50 pascals	7.00 (design value) m ³ /(h.m ²) @ 50 Pa	
Maximum	10.0 m ³ /(h.m ²) @ 50 Pa	Pass
10 Key features		
Party wall U-value	0.00 W/m²K	
Roof U-value	0.11 W/m²K	
Roof U-value	0.12 W/m²K	

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r19